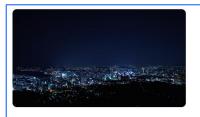
NOSIA

RONOG 9

Selecting the right network processor and software for your network

Lucian Popa, IP Sales Engineer

2 October 2024



Agenda

1. B2B technologies

- 2. Network processors
- 3. Software quality
- 4. Discover some of the latest IP innovations

B2B technologies

IP networks

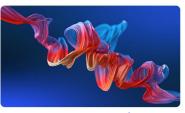
Data center

Security

Solutions for industry

https://www.nokia.com/networks/

Optical networks



Fixed networks

Mobile networks

Core networks

Private networks

RONOG 9, Bucharest - Confidential. Not for distribution or reproduction.

Fundamentals of IP technical innovation

Network Services Platform (NSP) Event-Driven Automation (EDA)

Next-generation **DDoS** protection Insight and Analytics

Network operating systems (SR-OS, SR-Linux)

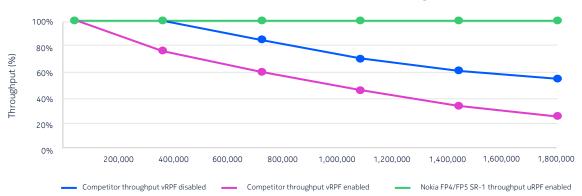
Merchant silicon

systems

Custom-developed silicon (FP, FPcx)

x86

IP routing portfolio poster

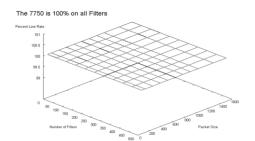

Agenda

- 1. B2B technologies
- 2. Network processors
- 3. Software quality
- 4. Discover some of the latest IP innovations

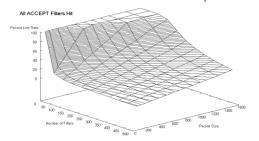
Fully buffered vs Partially buffered

Deterministic performance for real world use case

Fully buffered vs Partially buffered throughput with uRPF and flow diversity – IMIX (488 Byte average) packets


Partially buffered:

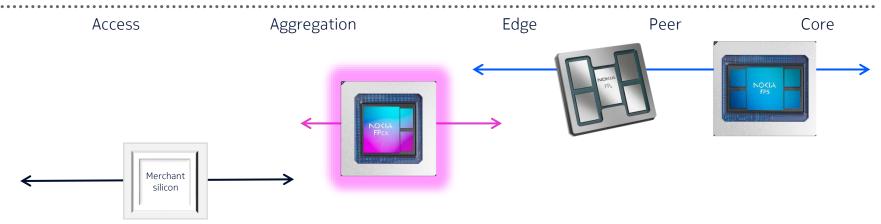
- Up to 50% performance degradation when processing high number of flows, due to cache miss
- Further ~25% decline in throughput for IMIX traffic when Enabling uRPF (loose mode)
- Packet drops for microburst traffic


Fully buffered:

- Determinist performance
- · Multi-dimensional scale

Real world performance: routes, labels, QoS, ACLs, services

ASIC/NP without real world capabilities:


Network processors

Fit for purpose solutions

Data center network architectures

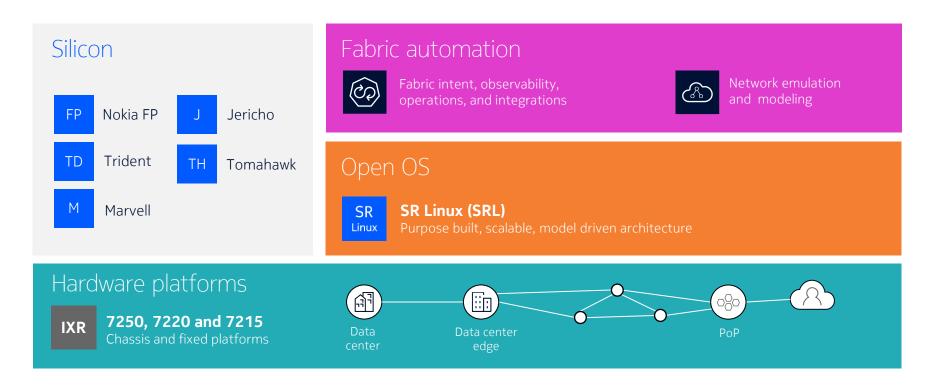
The industry has converged

Non-blocking fabrics

- IP and EVPN fabrics
- DC gateway or border leaf derivatives
- Collapsed core for edge DC
- Scale via super spines/pods

Merchant silicon (Broadcom)

- Jericho for deep buffer requirements
- Tomahawk for shallow buffer IP fabrics
- Trident for shallow buffer EVPN fabrics (VXLAN VTEP)



OOB management

- Merchant silicon
- 1G/10G port speeds

Data Center Fabric (DCF)

Agenda

- 1. B2B technologies
- 2. Network processors
- 3. Software quality
- 4. Discover some of the latest IP innovations

How do we measure quality?

How to ensure quality?

Reliability

Uptime and crash frequency Number of high-priority bugs Mean time between failures

Performance

Speed and latency metrics
Packet loss
Resource usage

Maintainability

Code readability and modularity A comprehensive tests suite Ease of updates and fixes

Security

Vulnerability prevention

Number and severity of CVEs

Incident response plan

A uniquely balanced team for quality

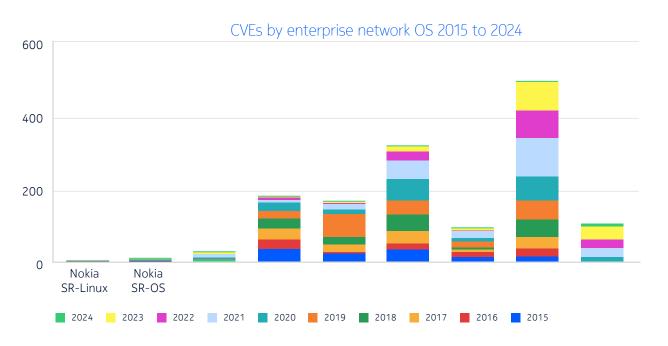
Development engineers

Test engineers

Permanent quality testing

350 000+ test cases

3+ years test hours run in **2** weeks

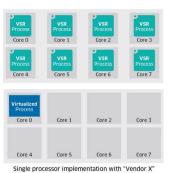

Proven quality in 20+ years

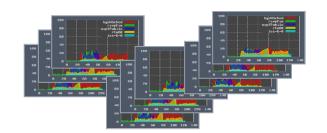
No major network outages requiring emergency patches in >15 years

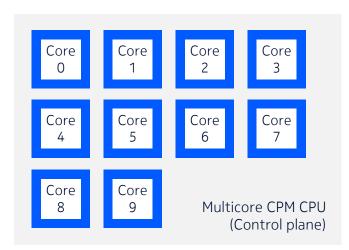
Software 100% developed in house for total control

Commitment to ultra-reliable software gives you peace of mind You can focus on innovation and growth

- Security alerts timely communication on known issues to minimize disruptions
- This graph excludes vulnerabilities found in open-source and thirdparty software


Symmetric Multiprocessing (SMP)


Control Plane performance

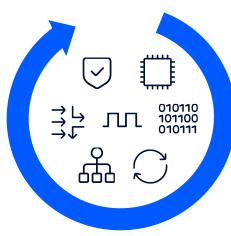

SMP allows tasks to be scheduled in and out of different CPU cores and for different tasks to run concurrently, unleashing the power of the multi-core processing complex

- High-performance routing and OAM requires more processing capability than can be delivered on single core
- Deliver highly scalable processing power
- Significantly improved routing protocol convergence times
- VSR Route Reflector (Control Plane intensive) can processes more route updates per second for real world prefixes with significant lower convergence times

Software

Development areas

Security


DDoS mitigation, ANYsec, Secure boot

Next-Gen services

EVPN, FWA, MAP-T BR

Fabric protocols evolution

Segment Routing, SRv6, Flex-Algo, BIER, TreeSID, TreeSIDv6

Platform coverage

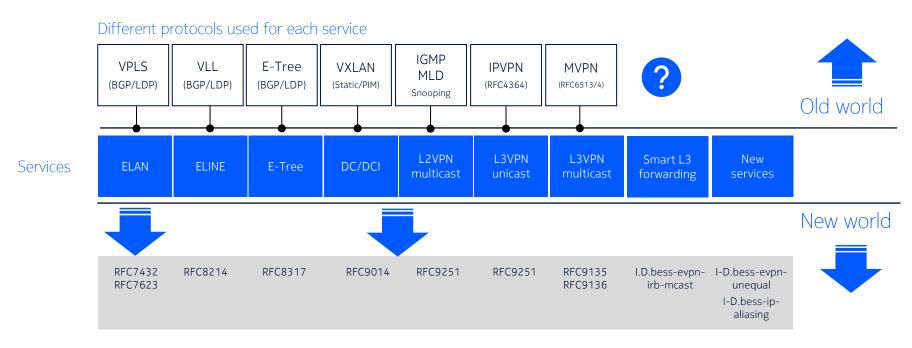
Full feature support for new HW

Programmability

Model-driven, NetConf/YANG, OpenConfig, MD-CLI, Telemetry, gRPC, RIB API, Python 3

Centralized network optimization

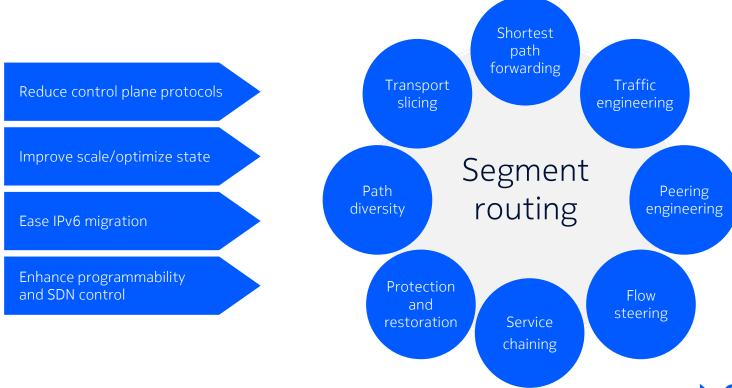
PCEP, BGP-LS, BNG CUPS/MAG-c


Simplified, scalable networking

Satellites, ESA, ZTP, IP Optical convergence

EVPN reduces operational complexity, increases profitability

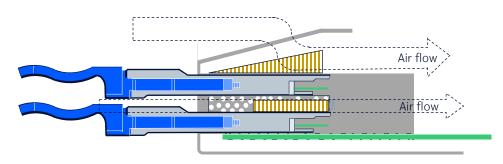
Adds new capabilities through a unified control plane framework



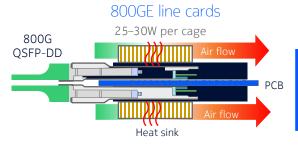
Common control plane framework

Segment routing (SR-MPLS and SRv6)

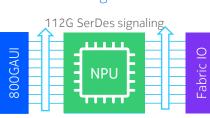
Could influence the ASIC/NPU selection



Agenda


- 1. B2B technologies
- 2. Network processors
- 3. Software quality
- 4. Discover some of the latest IP innovations

Design choices


Optics cooling

Dual sided PCB FP4

Routing silicon

Stacked SFP cages

- Classic DC design
- Heat sink on top, IRHS on bottom

- Bottom cage always hotter imbalanced optical performance
- DD Design point ~13W optics in all cages at 40°C
- · Limits applicability to future optics
- Fans run @ 75-80% max rate at room temp with 400GZR/ZR+: major power and service impact

Belly-to-belly SFP cages

- Large dedicated heat sink per cage
- Even cooling to all cages
- Cooling to 30W in all cages at 40C with margin to spare
- 800G enabled → Up to 40% power savings vs. 400G optics

Faraday cage design

- Honeycomb mesh to maximize air flow
- Minimize power consumption

Brief history of DDoS

2000 - 2020

Spoofed

Small number of compromised machines generating spoofed traffic to victim or via misconfigured DNS, NTP, Memcache servers

Blocked on scrubber using SYN-cookie, port / protocol / packet size access control lists (ACLs) or policers

Mostly amateur / script-based and commercial booter web sites

2020 - 2024

Botnet

Thousands of compromised IoT botnet devices generating traffic floods or sending realistic HTTP/DNS/VoIP requests to servers. GigE symmetric rollouts.

Difficult to mitigate using traditional DDoS mitigation appliances

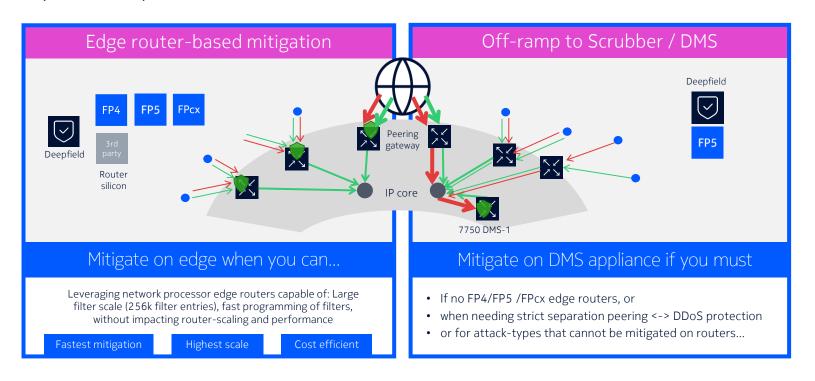
Criminal gangs / state-affiliated actors

2024+

AI

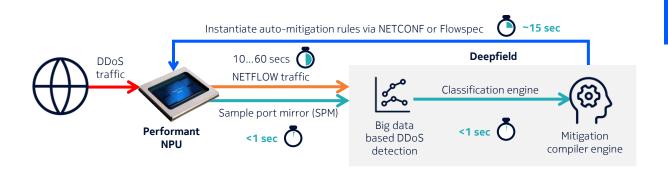
Millions or hundreds of thousands of residential proxies, compromised IoT sending realistic HTTP/DNS/VoIP requests to servers

High automation and attack variability. Both microburst and long-lived.


Criminal gangs / state-affiliated actors

Successful attacks

DDoS mitigation options


Two-layer DDoS protection

Using network processor ACL power to protect against DDoS

Combined forces for cost-effective DDoS protection

Al-powered intelligence

- Zero-touch big-data based DDoS detection
- Real-time compilation of optimal filter list

Performant silicon

- Large-scale ACLs to block large/complex DDoS attacks
- Line-rate filtering with no performance impact
- Fast filter-population for fastest possible mitigation

NL-ix deploy IXP-based anti-DDoS protection for enterprises across Europe (Sept 16, 2024)

Total time to mitigate 1st byte < 30 seconds

Next-generation platform for DDoS mitigation

FPGA vs Network Processor

Leading scrubber

Next-generation platform for DDoS mitigation

- Scale
 Performance
 Detection
 Time to mitigate
 Cost
- 800 Gb/s per appliance
- Variable throughput
- Manual (thresholds)
- Minutes
- FPGA cost points (\$\$\$)

- 2.8 Tb/s per system
- Always at line speed
- Automated
- Seconds
- FP5 cost points (\$\$)

Best-in-class accuracy, scale and economics. Inline surgical filtering capabilities at scale

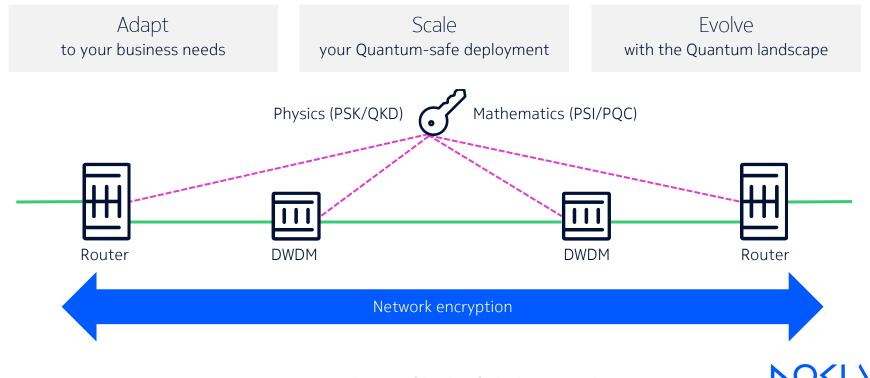
The threat of quantum computers for the world's digital economy

Quantum computing in threat actors' hands pose an immediate threat to infrastructure, commerce and society

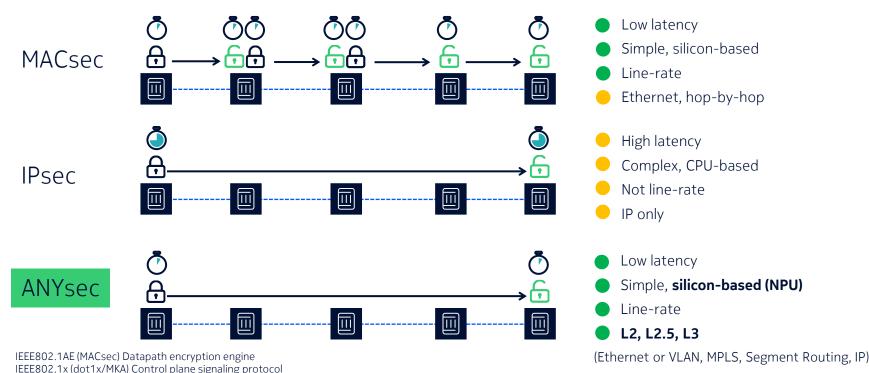
Quantum computers are expected to soon be powerful enough to break commonly used data encryption

Unauthorized collection of encrypted data today could be decrypted in the future

Defense, government, corporate, industrial communications today at risk, demand immediate quantum-resistant encryption



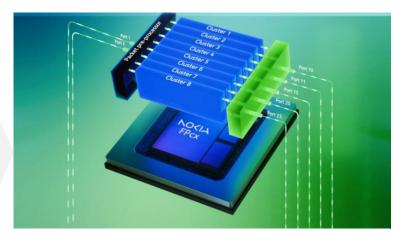
Network operators need to act now - take steps - to immediately negate the threat


Quantum safe networks

Transport (IP ANYsec + DWDM Layer 1) Quantum safe encryption and Key management

Quantum-safe networks (ANYsec)

Low-latency, hardware-based line-rate encryption for service providers


RONOG 9, Bucharest - Confidential. Not for distribution or reproduction.

Simplex platform innovation

Application warm restart and hitless upgrades per cluster

Software Modular, **Application** Per app state (SR Linux) hitless warm efficient upgrades restart design +Independent Traffic load-Independent Network data plane data plane balancing code and Processor processing across upgrade per (FPcx) clusters clusters cluster

DevOps for networking labs

ContainerLab (DC fabric, Telemetry (CodeSpace), ANYsec, GPT AskAl) First class support for containerized NOSes Transparent datapath

Git friendly and better image sharing and handling

Repeatable lab builds and CI friendly (declarative Lab)

NSP DevOps Lab Network Man and Health 7250 IXR SRL1 7750 SR1 7750 SR3 7750 SR36 7250 IXR SRL2 7750 SR2 7750 SR4 7750 SR37 7750 SR38 IP/Ontiral Coordination Data Collection and Analysis Provides you a quick access to an NSP lab that allows for exploration of NSP functions from NSP Web Service Managemen applications and APIs This lab consists of the NFM-P, an NSP Cluster. It supports IP/MPLS network management fault management, baseline analytics, network supervision, service fulfillment, telemetry monitoring, Analyze-Calculate-Transform (ACT), intent-based Man Layouts and Group programmable automation

RONOG8: <u>ContainerLab. Free and opensource networking lab environment</u> for the modern age - Roman Dodin (NOKIA)

Small footprint, open, free and fast

https://network.developer.nokia.com/cloudlab/lab-catalog/private-labs/IP/

https://containerlab.dev/ https://containerlab.dev/lab-examples/lab-examples/

Copyright and confidentiality

The contents of this document are proprietary and confidential property of Nokia. This document is provided subject to confidentiality obligations of the applicable agreement(s).

This document is intended for use by Nokia's customers and collaborators only for the purpose for which this document is submitted by Nokia. No part of this document may be reproduced or made available to the public or to any third party in any form or means without the prior written permission of Nokia. This document is to be used by properly trained professional personnel. Any use of the contents in this document is limited strictly to the use(s) specifically created in the applicable agreement(s) under which the document is submitted. The user of this document may voluntarily provide suggestions, comments or other feedback to Nokia in respect of the contents of this document ("Feedback").

Such Feedback may be used in Nokia products and related specifications or other documentation. Accordingly, if the user of this document gives Nokia Feedback on the contents of this document, Nokia may freely use, disclose, reproduce, license, distribute and otherwise commercialize the feedback in any Nokia product, technology, service, specification or other documentation.

Nokia operates a policy of ongoing development. Nokia reserves the right to make changes and improvements to any of the products and/or services described in this document or withdraw this document at any time without prior notice.

The contents of this document are provided "as is". Except as required by applicable law, no warranties of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose, are made in relation to the accuracy, reliability or contents of this document. NOKIA SHALL NOT BE RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS DOCUMENT or for any loss of data or income or any special, incidental, consequential, indirect or direct damages howsoever caused, that might arise from the use of this document or any contents of this document

This document and the product(s) it describes are protected by copyright according to the applicable laws.

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

